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Simulation Validation and Uncertainty Quantification

• In order to fit models to data, we need a 
way to simulate the data given a model

• Our projects involved simulators for the 
Manganin gauge experiment and for 
cylinder tests, which we use to calibrate 
models to experiments

• We call the parameters we seek to 
optimize the degrees of freedom (DOF)

• We use a Bayesian approach with its 
associated UQ benefits
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The Manganin Gauge Project

Experimental Setup
● Flyer plate impacts the setup to create an initial 

shock
● Shock Propagates at more than 3 km/s
● GPa pressure scales and microsecond time scales
● Supersonic shockwaves at detonation 
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Experimental Data

• This problem is very difficult to simulate
• Embedded gauge data from LANL is 

well studied
• LLNL has also run manganin gauge 

experiments
− Historically hard to simulate

• Experimental setup is very similar
− LLNL embeds gauges in teflon

▪ Nontrivial wave-dynamics
• Want to incorporate LLNL data for EOS 

calibration and validation

LANL

LLNL



  7

Direct Simulation Efforts

• Used a one dimensional unstable 
lagrangian (ODUL) solver within the 
ARISEE hydrocode

• Modeled the PBX9501 HE as a reactive 
flow
− 26 parameters, 6 degrees of 

freedom (DOF)
• Initial values informed by previous 

research2

• Gets a lot correct
− Predicts detonation 
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Simulation Optimization

• After one iteration of optimization we 
encounter a local minima

• Good qualitative agreement between 
simulation and experiment

• Want to compare to the LANL 
experiments
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Comparing LANL and LLNL data

• Use the optimization scheme on the 
LANL experiments
− Very good agreement 

• Simultaneously optimize multiple 
experiments

• Thinner gauges and simpler wave 
mechanics 
− We trust this data

• These two LANL experiments are 
consistent
− use same DOFs 
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Validating the LLNL Data

• Using the DOFS from our previous 
optimizations

• LANL and LLNL data appear to be 
inconsistent

− Different DOFS fit each 
experiment

− Possible there is missing 
physics

• We are able to fit the LLNL data, but not 
as well as the LANL data
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The Cylinder Test Project
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The CJ State

• The CJ state of a HE is the thermodynamic state at which the shock wave is 
sonic and the detonation is self-sustaining

• The CJ isentrope is the locus of thermodynamic states that the HE expands 
on during an explosion

• The CJ isentrope passes through the CJ state
• We cannot measure the entire CJ state directly, instead we view complicated 

functions of the CJ state (e.g. PDV probe data)
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Simulating Cylinder Tests

• Running cylinder test simulations takes a long time (~45 minutes)
• Optimizers run many simulations to explore the parameter space (~2 days)
• Comparing errors in thermodynamic quantities is fast (< 1 second)
• Can we somehow avoid these simulations by extracting the information they 

contain upfront?
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Proposed Workflow

• Cylinder tests inform the CJ isentrope
• Use a Gaussian process spline method to learn the CJ isentrope with 

uncertainties
• Calibrate EOS to this CJ isentrope pseudo-experiment instead of PDV data 
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Benefits

• Fitting an EOS model becomes very fast (< 1 minute, instead of days) and 
permits uncertainty quantification for parameters and quantities of interest

• The learned CJ isentrope is agnostic towards any functional form
• We can fit many different parametric EOS models to the same CJ isentrope 

pseudo-experiment
• In principal we never need to run the cylinder test simulation again
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Step 1: Invert the CJ Isentrope

• Simulate many cylinder tests using varying proposal isentrope curves

P
ressure / P

a

Density / mg cm-3
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Step 2: Invert the EOS Model

• We use the Davis Products EOS
• Fit to CJ isentrope pseudo-experiment and overdriven Hugoniot data
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Conflicting CJ States

• Under this method, both the isentrope inversion and the EOS model infer a 
distribution over CJ states for the HE

• We remedy this by constraining the isentrope inversion by the observed 
detonation velocity, which was also measured during the cylinder test
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Resulting Davis Products EOS Fit
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Resulting Davis Products EOS Fit



  21

Uncertainty Quantification on Model DOF
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Uncertainty Quantification on Model DOF
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Conclusion

• The technique for inverting the CJ isentrope works well

• This introduces tension from two models inferring the CJ state independently

• Care must be taken to address conflicting CJ states

• The key benefit is that fitting EOS models downstream becomes fast

• Future work can explore the consistency of the cylinder test inversion across 

probes, shots, and experiments


